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A8
AR4

AST

BID

BPF

b

C

Cl, C2, etc
€1 = 52

Cfg

NOMENCLATURE

Description

Area

Physical primary nozzle exit (throat)
plane area

Effective throat area

Nozzle exit plane area

Fan stream exit area

Blocked area

Area ratio: ratio of total area
(annulus for plug nozzles, plane for
2-D nozzles) to physical flow area
Ellipse semimajor axis

Advanced supersonic transport
Turbine blade

Blow-in-door

Blade passing frequency

Ellipse semiminor axis
Coefficient

Corgressor rotor

Compressor rotor - 2nd harmonic
Nozzle gross thrust coefficient
(static and wind-on)

Nozzle discharge coefficient (ratio of
actual to ideal flow rates) or inlet area
coefficient (ratio of actual to physical
flow area)

Axial balance readout

Normalized cross-correlation function
in-jet to far-field

Speed of sound

Diameter

Aerodynamic drag force

Nozzle physical outer dia.

Tube internal diameter

Circumscribed tube bundle diameter
Internal diameter of conical primary
nozzle at primary exit, plane 8
Internal diameter of nozzle at plane 9
Outer shroud diameter

Decibel, re 0.0002 dyne/in2

Discharge valve

Exhaust gas temperature

Effective perceived noise level

Unit of effective perceived noise level
Sabbl separation parameter

Measured gross thrust (stream)

Net thrust
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Units

(in.%, £c2)

(0., (ee?)
(1n.2), (ft2)

(1n.2), (ftz)
(in.z), (ft
(1n.2), (ft

Zi;o;
ZH;)-
(in.)

(Hz)

counts

(ft/sec)
(in.) ’ (ft)
1bg
(in.)
(in.)
(in.)

(in.)
(in.)
(in.)
(dB)
(°R)
(EPNdB)

(1bg)
(1bg)
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ZN

N/VE

NR
NOY

Ry
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NOMENCLATURE (Continued)

Descrigtion

Frequency
Real-gas stream thrust correlation
factor
Axial thrust
Axial balance force
2-D nozzle throat height (normal)
2-D ramp (plug) rize
2-D immersion depth parameter
High pressure turbine
Conical ejector annulus height (mean)
2-D suppressor height
2-D primary flow passage height
Height \
Pressure altitude
Inlet guide vane
-1 imaginary number
Normalized reactance (imaginary part of
complex acoustic impedance)
Critical flow factor
Fan-core (dual-flow) exit Flane
offset distance ~ 5,75"
Isentropic ratio of specific heats (1.4)
Calibration load
Length
Axial length of 2-D remp
Axial reference locat:ui of variable
position inlet centerbody
Shroud internal length
Tube external diameter

Low pressure compressor
Low pressure turbine
Mach number

Freestream Mach number
Jet stream Mach number
Alrcraft Mach number
Multiple pure tone

Mass flow rate

Throat Mach number .
Nozzle

Rotational speed

Percent corrected speed
Corrected speed

Number

Narrowband .
Annoyance weight SPL; used to calculate
PNL
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Units

(Hz)

(1b)

(1b)

(in.)
(in.)
(in.)
(in.)
(in.)
(in.)
(in.)
(ft)

(1bm/sec)
rpm
%
rpm

(Noy)
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SDOF
SST
SABBL

NOMENCLATURE (Continued)

Descrigtion

Octave band

Overall sound power level re:
10-13 yatts

Overall jet pressure level(aero-
dynamic pressure, rms)

Overall sound pressure level
Pressure

Ambient free stream pressure
Suppressor base static pressure
Static pressure (surface)

Wall surface pressure

Pressure ratio

Nozzle exit total pressure

Static pressure difference

Sound power level, re 10-13 yatts
Inlet total pressure distortion =

Perceived noise level

Unit of perceived noise level
Sound presstre in far field
Sound pressure in jet
Compressible dynamic pressure,
Resistance

Radius

Outer flowpath contour radius
Inner flowpath contour radius
Normalized resistance (real part of
complex acoustic impedance)
Revolutions per minute

Rotor one - 1st stage rotor
Reynolds number

Radial distance

Relative humidity

Immersion radius

Outer (tip) radius

Hub (inner) radius

Distance between @,of tube rows
In-jet Strouhal number £D/V
Source function distribution
Sound pressure level

Sideline distance

Single degree of freedom
Supersonic transport

Stratford and Beavers boundary layer
analysis - computer program

xlix

dB

dB
psia, psig
psia, psig
psia, psig
psia, psig
psia, psig

psia

dB

(PpMax - PTHin.)

PNdB

(psi)
(psi)
PT- PS
(in.)

(in.)
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NOMENCLATURE (Continued)

Description

Compressor stall margin
Streamtube curvature - compressible
potential flow computer program
Temperature

Nozzle exit total temperature

Turbine Stage 1, Stage 2, etc.

Rotor tangential velocity

Rotor tip speed

Turbulent particle velocity

Mean particle velocity

Velocity

Core stream velocity

Fan bypass stream velocity

Fully expanded ideal jet velocity

Vortex shedding frequency

Weight flow rate

Width

Secondary entrained flow

Nozzle primary flow

Total primary and secondary flow

Induced flow

Flow width at basis (hub)

Flow width at tip (casing)

Axial distance

Reactance

Ramp normal coordinate direction

Axial coordinate from geometric 2-D
unsuppressed nozzle throat

Aerodynamic axial calculation station
Normalizing factor (SPL and PNL) for size
& test condition variance (deg)

Angle of attack

Bypass ratio

Orifice coefficient

Angle between a straight line from source
to microphone and engine or nozzle Y ; ref
to inlet or exhaust (acoustic angle)
Diffusion angle

Corrected total temperature (I%SEQ

)
Corrected total pressure (gggﬁb

Jet stream density
Ratio of specific heats
Incremental quantity

Pressure ratio's wave length
Inlet total pressure recovery factor

Units

e

® R
°R
ft/sec
ft/sec
ft/sec
ft/sec
ft/sec
ft/sec
ft/sec
ft/sec
Hz
1b/sec
(in.)
1b/sec
1b/sec
lb/sec
1b/sec
(in.)
(in.)
(in.)

(in.)

(in.)
(in.)

(deg)

(deg)
(deg)

lbm/ft3

(fe)




Symbol

Subscrigts

AMB, a
ANN
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Overall
PRI

SP

S

t,T

T

TE

th, TH
Total
Venturi

NOMENCLATURE (Concluded)

Description

Ambient

Annulus

Average

Blocked

Blow-in~door

Base

Core

Chute

Subsonic diffuser

Discharge

Effective

Exit

Entrance

Equivalent

Exit

Fan

Inlet

Ideal

Jet

Hub

Maximum

Minimum

Freestream or ambient condition
Combined primary & BID performance
Primary inlet

Spoke

Static condition

Total conditions

Tip

Trailing edge

Throat

Sum of primary & BID properties
Venturi-measured flowrate

Wall

Compressor entrance station
Metering nozzle station - wind tunnel
Diffuser exit (aero-traverse) station
Compressor discharge station
Flexible seal station - wind tunnel
Measurement plane for nozzle throat
Pr and Ty

Nozzi: throat plane

Nozzle exit plane

Fan bypass exhaust throat plane

11 /

Units
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SECTION 4.0

TURBOMACHINERY NOISE REDUCTION TECHNOLOGY

4.1 SUMMARY

4.1.1 Turbine Noise Reduction

Acoustic testing of a YJ85 turbojet engine at Edwards Flight Test
Center (EFTC), Edwards, California, was performed to:

° Investigate the acoustic characteriscics of turbine noise
in the far field,

. Obtain far-field noise reductions

° Verify air turbine rig results from Phase I of this program
The acoustic configurations tested were:

) Baseline

° Increased axial spacing between the turbine 2nd stage stator
and turbine blades

) Acoustic treatment (single degree of freedom) in the turbine
exhaust

These tests demonstrated that increasing the spacing to 1.0 nozzle tip
chord from 0.34 chord: resulted in an average turbine tone PWL reduction of
5.6 dB in the far field. The acoustic treatment (L/D = 1 with a splitter)
reduced the turbine tone (second stage) PWL an average of 23.5 dB. Both the
spacing and the treatment were found to suppress the turbine noise over a
wide frequency range. Jet noise and casing radiation created a "floor" in
the far field for the J85; this limited the apparent treatment effectiveness
in the far field for this vehicle,

The baseline turbine far-field directivities were found to be consistent
with prior investigations (such as Smith and Bushel, Reference 8). In
addition, the directivities were similar for both the suppressed and unsup-
pressed turbines.

Scaling studies were performed to indicate the magnitude of the turbine
noise in an SST application. The 300-foot sideline peak PNL's for the
turbine are summarized below:
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Spacing
Bagseline (SST) plus
% rpm Turbine Spacing Treatment
Condition (J85) PNdB@110° PNdB@110° PNdB@110°
Takeoff 100 112.1 103.5 102.9
Approach 80 106.8 102.5 93.4

These perceived noise level results provide 2 measure of suppression levels
with turbine spacing and treatment. It is seen that turbine spacing is

quite effective in reducing the turbine noilse, yet can be done with relatively
small penalties to the engine system. The impact of turbine spacing on

engine system noise was studied in more detail in the Systems Integration

part of the program reported in Section 5.0.

4.1.2 Compressor Noise Reduction

Acoustic testing was performed at Peebles Site IVB on an advanced
three-stage low pressure compressor fitted with a hybrid inlet to determine
the noise suppression relative to a cylindrical hardwall baseline at the
approach and take-off conditions. This inlet had a design quite similar to

the SST/GE4 inlet but had a bellmouth forebody to simulate inflow conditions
during flight,

For the approach mode, the hybrid inlet provided 11.5 APNdB noise
suppression relative to the baseline cylindrical bellmouth inlet at the SST

selected operating point (inlet throat Mach number = 0.78). These results
are for a 1045 lbm/sec SST engine.

For the take-off mode, the hybrid inlet was evaluated both with the
blow-in doors closed and open. With the blow-in doors (BID) closed, the
hybrid inlet provided 15.5 APNdB noise suppression relative to the baseline
inlet at an inlet throat Mach number of 0.77.

The auxiliary inlets were designed o0 that the effect of a high-flow
Mach number in the passage on noise ledicage through the open doors could be
investigated. However, the aerodynamic performance of the blow-in doors was
somewhat disappointing in that high throat Mach numbers were not achieved in
the BID passages. At the high fan tip speeds, characteristic of the take-off
condition, the noise emanating from the BID's dominated the noise spectra 1
and, therefore, the acceleration suppression achieved in the primary inlet
did not reduce the noise level, However, at these speeds, up to 15 APNdB
noise suppression for this configuration was achieved relative to the baseline
inlet. This was attributed to the acoustic treatment between the fan and
the doors and the difference in inlet configuration.
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The aerodvnamic performance of the hybrid inlet with the BID's closed
was excellent. The pressure recoveries for both the approach and take-off
(BID's closed) mode were 0.98 at the selected operating inlet throat Mach
number. There was no performance penalty due to the addition of acoustic
treatment to the inlet. The radial pressure distortions were 0.047 and
0.063 (maximum-minimum/average) for the approach and take-off modes,
respectively, with about 30% of the flow area adjacent to the tip flowpath
below average.

Inlet performance, with the three BID positions investigated, was
below the level assumed in sizing the inlet. Overall operating point
recoveries were 0.952 to 0.962, with corresponding radial distortions of
about 8% and 42 to 66% area extent, increasing with BID throat area. This
performance degradation caused the primary/BID flow split to depart signifi-
cantly from the design intent for the nominal and large BID settings.

Another method of suppressing compressor noise was evaluared: that of
using the IGV variable flaps to reduce area and increase Mach number in the |
IGV passage. For the High Mach IGV Test, significant noise suppression was
achieved. A 9 APNdB noise reduction was measured at a 1410 ft/sec tip speed,
and a 5.5 APNdB reduction was measured at a 1524 ft/sec tip speed. However,
coupled with these noise reductions was a sharp drop in fan performance, i.e.,
airflow and pressure ratio. The corresponding thrust loss was so great that
this suppression technique is rendered impractical for high power flight
conditions (i.e., takeoff). It might possibly have an application for the
aprzoach mode, where thrust requirements are low, kut the penalties involved

in its implementation would likely result in a poor trade with noise suppres-
sion gains.

4.2 INTRODUCTION

412000 Background

It is well known that the environmental impact on community noise for a
supersonic transport system is generally dominated by jet noise at the side-
line measuring point during takeoff. This is particularly true for turbojet
and low bypass ratio turbofan cycles.

The SST engine turbomachinery components which dominate the generated
noise are the first compressor stages and the last turbine stages. Both
were studied in the current program. A three-stage low pressure system with
variable flap IGVs was used as the source model in the compressor noise
investigations. This fan had an overall design pressure ratio of 4 and a
Rotor 1 tip speed of 1524 ft/sec. As such, it constituted a valid model for
low bypass (B = 0.2) turbofan SST engine noise studies. This same compressor,
or variations thereof, has been used extensively in the Advanced Supersonic
Transport (AST) Studies being conducted by General Electric for NASA-Lewis
under Contract NAS3-16950, in cooperation with several airframe manufacturers.
Two approaches to limiting the propagation of compressor noise were studied:
namely a hybrid inlet and high Mach number IGVs.
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The YJ85-5 turbojet engine was used for the turbine noise investigations.
A large inlet suppressor for compressor noise and an open nozzle for jet
noise reduction were used to unmask the far-field turbine noise. The J83
engine has a relatively high pressure two-stage turbine designed for a tip
speed of 1181 ft/sec. As such, it represented a valid model for SST engine
turbine noise investigations. The details and results of both the compressor
and turbine tests are included in the sections which follow. 1In Section 5,
these results, combined with the Jet noise reduction results, are applied in
a Systems Integration Study to define the level of SST noise technology
developed under this program relative to the current FAR-36 regulation.

4.2.2 Turbine Noise Reduction

In the past, the noise generated by the turbine has not been as signifi-
cant as the noise problems associated with other jet engine components, e.g.,
the compressor or the jet. With the significant acoustic gains that have
been made in controlling the far-field noise from other components, considera-
tion of turbine noise and its reduction becomes an integral part of any
systems noise study. Consequently, there is a definite need for turbine
noise data and established turbine noise reduction methods.

The Supersonic Transport‘Noise Reduction Technology program, Phase 11,
was established with the broad goal of providing the additional acoustic
technology necessary to design high speed aircraft systems recognizing future

acceptable noise levels. Within this framework, a turbine noise reduction
study was established with the following objectives:

° Determine the best methods of minimizing turbine noise
) Demonstrate turbine noise reduction techniques experimentally
° Extend near-field results from Phase I to the far field

Acoustic testing of a YJ85 turbojet engine was performed to demonstrate
and evaluate methods of suppressing this turbine noise for the SST.

4.2.3 Compressor Noise Reduction

Testing was performed to evaluate the unsuppressed compressor noise
and the use of a hybrid inlet to suppress this noise for both take-off and
approach flight conditions. In addition, a pioneering effort to evaluate
the effect of blow-in-door auxiliary inlets, a necessary part of any SST
inlet, on take-off noise was accomplished with an attempt in the design to
suppress the noise leakage through the doors. Finally, the generation of

high Mach numbers in the IGV passage was also used to suppress the compressor
noise.

434

G Sl i T g

¢

e > 7 & RO T TR s AT
e N " e . ™ :
w



The variable geometry inherent in a supersonic transport engine inlet
and nozzle makes it well suited to the hybrid inlet concept, which emplovs
moderate airflow acceleration suppression in addition to wall acoustic treat-
ment suppression, and thus avoids the performance problems associated with
hard choking the inlet. The variable geometry already present makes it
possible to use the same inlet noise suppression scheme at take-off and
approach conditions. Approach, of course, is the most important condition
with regard to compressor noise, since jet noise dominates at takeoff,
although some compressor noise suppression is required at this condition.

The hybrid inlet had a basic design quite similar to the SST/GE4 inlet, but
had a bellmouth forebody to simulate inflow conditions during flight. Four
segments of wall acoustic treatment were used in order to suppress a wide
range of frequencies (that is, the blade passing frequency of all three
rotors, the first rotor second harmonic, and the lower frequency multiple

pure tones). The treatment panels were replaceable with hardwall panels so
that acoustic treatment suppression could be isolated. A baseline cylindrical
inlet also was tested to evaluate the basic source noise characteristics of

the compressor, to isolate the acceleration suppression, and to perform the
High Mach Number IGV test.

4.3 TURBINE NOISE REDUCTION

4.,3.1 Test Description

4.3.1.1 Vehicle Description

The test vehicle for the turbine tests was a YJ85-5. A cutaway of a
J85 is shown on Figure 350, The J85 turbojet engine has an eight-stage
compressor (with an air bleed system) and a two-stage turbine. Blade numbers
for the rotor stages are presented on Table 12,

The basic J85 turbine is illustrated on Figure 351. For the speed
range tested (70% to 100% rpm), the turbine tip speed ranged from 826 ft/sec
to 1181 ft/sec; and, the turbine pressure ratio (PT{,/PSgyt) varied between
2.4 and 5.0, The turbine inlet temperature ranged from 1300° to 1670° R.

4.3.1.2 Configuration Selection

There are two methods for reducing the turbomachinery noise emanating
from a jet engine: (1) reducing the power of the noise source, and (2) absorb-
ing the acoustic energy before it is radiated to the far field.

It was decided that the turbine source noise reduction methods that
were investigated would be applied to the noise generated by the turbine
second stage blade. The main reason for selecting the second stage for
investigation was that the test results would be more easily interpreted, in
that such complexities as blade row attenuation and rotor interaction with
both upstream and downstream nozzle blades would be avoided.
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Cross Section of J85 Engine,

Figure 350,
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Table 12, Blade Numbers for J85
Turbomachinery.

Compressor

l ' Number of
Stage Blades

31
60
87
106
131
132
140
120

Turbine

Number of
Stage Blades

0 = O O Pd W o -

1 75
2 55
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= 0,34 in, Chord
3 " N2, Tip

[— 16.4 in, Dia

Dia

p———)
A i |

Nl Bl
(43) (75)

T——-lﬂ.ﬁ in, Dia !
9,4 in, Dia

Figure 351, J85-5 Turbine Baseline Configuration,
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A systematic investigation of the effects of spacing on high pressure
turbine noise was one of the avenues of investigation in Phase I (Reference
3). A schematic of the test turbine from Reference 3 and the spacings tested
are presented on Figures 352 and 353, respectively. A summary curve of the
acoustic results is presented on Figure 354. As indicated, an increase cr
the second stage turbine spacing to one nozzle tip chord would result in a
significant noise reduction for the J85.

In addition to the spacing tests, the Phase I program investigated
problems associated with high temperature treatment design and established
criteria necessary to apply acoustic treatment technology to turbine noise
reduction studies. A number of candidate materials (Figure 355) were evaluated
using the high temperature acoustic duct facility (Figure 356). Typical
results are shown on Figures 357 through 359. These studies concluded that
Single Degree of Freedom (SDOF) treatment should be used in high temperature
applications because of its predictable acoustic behavior in the turbine
environment and its superior mechanical characteristics.

Thus, based on Phase I results, the best acoustic configurations for
minimizing the turbine noise would be: first, increasing the turbine second-

stage axial spacing to reduce the noise generation and, then, adding acoustic
treatment in the turbine exhaust duct.

Spacing is not the only method for reducing the source noise in turbo-
machinery. Other techniques which have been used successfully in the past
for fan/compressor modifications include: circumferential lean of the
stationary blades to phase the interaction, swept blades to increase the
spacing in the tip region, and changing the rotor/stator blade number ratio
to create modes which propagate less efficiently. Within the scope of this
program, however, the only practical alternative to spacing was to circumfer-
entially lean the second-stage vanes. Analytical studies were made to deter-
mine the relative noise reduction of spacing versus leaned vanes. The
analysis procedure used was similar to the one presented in Reference 43.
Results from these studies are summarized on Figures 360 and 361. For the
J85, spacing is the best initial method to reduce the noise generated by the
second-stage vane/blade interaction.

Thus, it was decided that the two turbine acoustic configurations that

would be tested were: (1) spacing, and (2) SDOF acoustic treatment downstream
of the spaced turbine.

A practical upper limit on the amount of treatment that might be utilized
in an engine application is "one diameter in length with a treated splitter."”
Testing the J85 with maximum exhaust treatment thus would provide an estimate
of the upper limit for turbine noise suppression. Selection of the amount
of treatment required to meet any systems goals could then be determined by
interpolation rather than extrapolation. A nominal tuning frequency of
16 KHz was selected in order to: (1) suppress the stage 1 noise (not directly
affected by spacing), and (2) utilize the broadband suppression character-
istics of SDOF to further reduce the stage 2 noise in the far field. The

results of a design study for the J85 showed that a treatment depth of
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30 1in, Turbine

Pl Stator
Vane
(56)

| BN NS S S

0,75 —

in,
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Vane
(56)
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Stator

Vane
(56)

L L L L

Turbine
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in,

L L L P
L =4

7

— Turbine
L] Blade
(80)
Baseline
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o 2.0“ |

)-—-——Turbine
Blade
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}—— Turbine
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?'

3.25
in.

Figure 353, Turbine Schematics and Spacings Tested.
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Hole Dia = 0,02 in,
40% Open

- (00000 3-

Hole Dia = 0,03 in,
20% Open

(WA -

Hole Dia = 0,062 in,
4% Open = 0,03 in, Thick Faceplate

e (LTI Ee

Hole Dia = 0,062 in.
7% Open = 0,03 in. Thick Faceplate

>

CER-VIT No. 3

"t',-u";",:;.‘.?"- 5 M
Mono-Block !E;-i r;a 0.5 in,
AT SR YR I H !
Mono-Block 1.0 in,

Figure 355, High Temperature Acoustic Treatment, SST
Noise Reduction Technology, Phase I,
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0.125 inch, having a peak suppression in the 14.5 KHz to 18 KHz range
(approach through takeoff), would provide significant turbine suppression.

The J85 turbine schematic was shown previously on Figure 351. The
spaced second-stage turbine and the spacing-plus-treatment configurations are
illustrated schematically on Figures 362 and 363. The hardware for the

¥ acoustic treatment section is shown on the photograph of Figure 364. The
assembled treatment section 1s shown on Figure 365 (aft looking forward).

4.3.1.3 1Isolation of Turbine Noise

In order to minimize the inlet noise radiated to the far field, an inlet
suppressor which has been used successfully for J79 testing (Reference 1)
was adapted to the J85 (Figure 366).

The J85 engine has a variable area (Ag) exhaust nozzle. For these
acoustic tests, jet noise masking of the turbine acoustic signal presented a
potential problem. The far-field jet noise could be reduced by opening the
nozzle which lowered the jet exit velocity. A review of available J85 data
on the engine operating limitations was made, and the maximum nozzle area
setting for the acoustic tests was determined to be: 200 in.2 at 70% through
95%Z rpm and 160 in.? at 100% rpm. The nominal value of Ag at 80% speed is,
for comparison, 131 in.2,

An analytical study was made to determine the effectiveness of testing
at maximum Ag in order to unmask the turbine. The turbine noise model from
Smith and Bushel (Reference 8) and the SAE AIR 876 jet noise model (Reference }
44) were used. Typical predicted spectra from these studies are presented on
Figures 367 and 368. Also shown for comparison are the predicted jet spectra
for the J85 at the nominal area setting, Two important conclusions from
this study were:

(1) Opening the exhaust nozzle is necessary in order to avoid
masking of the turbine by the jet noise.

(2) Even at maximum Ag, there may still be a potential jet noise
masking problem at 95% and 100% rpm.

Because the acoustic effects of the inlet suppressor and operation at
maximum Ag were not known, extra testing was planned for the baseline config-
uration; i.e., the baseline J85 was tested on a nominal and maximum Ag
schedule both with and without the inlet suppressor. Thus, comparisons could
be made to determine the extent of compressor, jet, and turbine noise for
the baseline J85, and the effect of the suppressor and maximum Ag operation
on the turbine far-field acoustic signal could be determined.
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Figure 362, J85~5 Turbine Increased Spacing, V2-B2, z
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Figure
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Exhaust Acoustic Treatment Section Assembled, Aft Looking Forward.
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4.3.1.4 Test Program and Results

The test program was performed at the General Clectric Flight Test Center
facilities, located at Edwards Air Force Base in Southern California. A
description of this facility is presented in Appendix A. 1In Appendix B, the
acoustic data reduction system is described.

The acoustic tests of the J85 were performed according to the test
matrix presented on Table 13. Summaries of the actual nozzle settings and
speeds tested along with the ambient conditions for the baseline (max. Ag
with inlet suppressor), spacing, and spacing plus treatment configurations
are presented in Appendix D.

4.3.,2 Discussion of Results

4.3.2.1 Identification of Turbine Noise

As has been noted previously, in order to ensure that the turbine noise
could be measured in the far field, the tests were performed with an inlet
suppressor (minimize inlet noise) and on a maximum exhaust nozzle schedule
(low jet noise). Additional points were added to the baseline tests in
order to investigate the effects and the effectiveness of these measures.

The approximate peak Strouhal frequency (peak jet noise) is 400 Hz. The
jet noise reduction which was achieved is indicated by comparing the 400 Hz
1/3-octave SPL directivities for the nominal Ag schedule and the maximum
Ag tests, Figure 369 (100% rpm) for example.

Similarly, the effectiveness of the inlet suppressor is shown by compar-
ing the first-stage compressor tone SPL directivities (1/3-octave data) for
the bellmouth inlet and the inlet suppressor configurations, Figure 370 (80%
rpm) .

The combined effect of maximum Ag operation and the inlet suppressor are
shown on Figures 371 through 373 where typical one-third octave spectra at
40° (front max. noise), 110° (turbine max. noise), and 140° (aft max. noise)
are shown at approach for the bellmouth/nominal Ag, bellmouth/max. Ag and
inlet suppressor/max. Ag acoustic tests. In addition to supporting the prior
evidence that the inlet suppressor and max. Ag operation were effective in
isolating the turbine far-field noise, these spectra comparisons indicate two ]
other things. First, the "bare" J85 (bellmouth inlet/nominal Ag) far-field |
noise signature contains significant contributions from the compressor and the
jet (i.e., the inlet suppressor and max. Ag operation were necessary to isolate
the turbine noise signal). Second, the turbine 1/3-ociave "tone" SPL's
increased in level when the exhaust nozzle was opened. This indicates that
the engine operating point shifted (increasing the turbine noise that was
generated) ; this shift is shown on Figure 374, where the turbine pressure
ratio (PTy,/PSoyt) and energy extraction (ATt/Tty,) are shown versus the tur-

bine speed function. Opening the nozzle caused the turbine to operate at a

TR e b
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Table 13,

YJ85-5 Test Point Matrix Turbine Noise Reduction.

Baseline w/

=~ Hga Bellmouth Inlet Suppressor S AR et
.Q 2 L.

Cycle A . A Cycle A Max, A Max, A |
Speed, % ycle Ag | Max 8 yele ag | Max. Ag (Max 8) (Max A8)
85 X X X X
95 X
100 X X X

Run and repeat at each point,
459
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Figure 374, Effect of Open A_ on Turbine Performance.
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higher speed function and, consequently, at a higher pressure ratic and

higher loading; this resulted in the turbine noise increase in the far-field
data.

As noted on the one-third octave spectra, the band which contains the
turbine second-stage blade passing frequency also would contain the compres-
sor tones from the stage 2 fundamental and stage 1 second harmonic. The
far-field narrowband spectrum at 80% speed, 110° to the inlet, Figure 375,
shows that with the inlet suppressor there were no significant contributions
from the compressor tones at 110°., A comparison between the far-field narrow-
band and one-third octave turbine stage 2 directivities, Figure 376, shows
that the influence of the residual compressor tones was negligible for acoustic
angles 40° through 160°, For this reason, one-third octave PWL's used in the
analysis of the test results do not include the data at 20° and 30°. Com-
parisons of the far-field narrowband spectra from the configurations tested
indicated that 8 KHz should be used as a lower frequency bound for calculat-
ing an overall turbine PWL. Both of these results have been factored into
the PWL and OAPWL's tabulated in Appendix D.

A second feature which is evident in the far-field narrowbands is that,
rather than having a distinct tone at turbine blade passing in the far field,
there is a rather broad hump or haystack of noise in the far field around the
blade passing frequency. Examination of the baseline probe narrowbands
(Figures 377-380) reveals that in the duct the turbine noise is indeed a tone.
The mechanism behind this modulated tone (haystack) in the far field is
thought to be the effect of radiation of the turbine tones through the turbu-
lent jet. The total '"tone" energy in the far field is then the integrated
value across the frequency range of the haystack; this integration is approxi-
mated by using the 1'3-octave PWL's in this report. A comparison between the
far-field one-third octave PWL's and the duct (probe) PWL's is shown on Figure

381. Considering thé unknowns (i.e., transmission from the duct to the far
field) the agreement is quite good.

The J85 baseline turbine directivity (stage 2) is compared with the
directivities from Smith and Bushell's work (Reference 8) on Figure 382,
The good agreement in the aft quadrant shows that operation at maximum Ag
did not create a turbine directivity pattern untypical of a turbojet.

In summary then:

™ The J85 turbine noise was discernable in the far field when the

inlet suppressor was used, and the exhaust nozzle was at the
maximum area setting.

° Opening the exhaust nozzle shifted the turbine to a higher
point on its operating line. This resulted in a higher turbine
noise level at max. Ag, which suggests a strong dependence of

turbine noise on the turbine pressure ratio and/or energy
extraction.
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° The inlet suppressor effectively eliminated the influence
of compressor tones on the 1/3-octave turbine data at
acoustic angles of 40° through 160°,

° The baseline turbine noise in the far field was a modulated
tone.
) The duct measurements (tone PWL's) were in agreement with

the far-field one-third octave PWL's.

° Measured turbine directivities were consistent with previously
published results,

4.3.2.2 Effects of Spacing and Treatment

The one-third octave SPL directivities for the band containing the s
2 blade passing frequency at 80% speed are presented on Figure 383 for th
baseline, spacing, and spacing-plus-treatment configurations. There appe
to be a "noise floor" at approximately 65 dB. Except for the influence o
this floor, the directivities are similar for all three configurations.
one-third octave spectra at 110° are compared on Figure 384. In addition
the large noise reduction at blade passing which was evident in the direc
tivities, this spectral comparison demonstrates that both the treatment a
the: spacing resulted in a significant noise reduction over a wide frequen
renge. This broadband suppression, associated with spacing and treatment
also evident in the far-field narrowband spectrum comparison (110°) of Fi
385. In addition to the previous observations, two other features are ev
First, for the fully suppressed configuration (spacing—plus-treatment), a
tone appeared at 3 KHz. The source of this tone is unknown; it is peculi
to this speed/point configuration. Second, for the fully suppressed conf
ration, tones rather than haystacks appeared in the far field. This sugg
that either: (1) the far-field tones are the result of casing radiation
(umaffected by the jet), or (2) the haystacking phenomena are amplitude-
dependent, hence the fully suppressed tones are not "strong enough" to ha
modulation occur.

The far-field tone directivity, one-third octave spectra at 110°, an
far-field narrowband spectra at 110° are compared on Figures 386, 387, an
388 for the three configurations at the 90% speed point. As with the 80%
data, the far-field turbine noise reduction is quite significant not only
blade passing frequency but also over a broad frequency range; the direc-
tivities are similar, and tones reappeared in the far field.
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As with the baseline results, the comparison is good between the probe

tone PWL's and the far-field one-third octave PWL's for the spacing conf

ig-

uration, Figure 389. For the fully suppressed configuration, however, the

far-field tone (narrowband, no haystacking) PWL's were generally 10 dB hi

gher

than the probe PWL's, Figure 390. This indicates that the primary transmis-
sion path is not out the exhaust duct but, rather, that casing radiation is
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dominant in the far field for the fully suppressed configuration. This
supperts the hypothesis that casing radiation is the source of far-field
tones for the fully suppressed configuration.

One other feature of the fully suppressed probe data (Figures 377 through
380) is that the broadband noise for the outer acoustic probe (Probe No. 1)
was 10 dB above the tone level at the inner probe (Probe No. 2). For pur-
poses of calculating the PWL's, it was assumed that the tone at Probe No. 1
was the same level as at Probe No. 2 but masked by the broadband noise.

The reductions in far-field PWL at the turbine stage 2 blade passing
frequency are shown on Figure 391. Also shown, is the projected PWL reduc-
tion which would have been achieved if there were no casing radiation "floor"
in the far field (using the probe results) for the fully suppressed configur-
ation. These tests demonstrated that the turbine noise in the far field
could be reduced significantly by incorporating spacing and/or treatment in
the turbine design. Furthermore, for the levels of noise reduction achievable,
casing radiation considerations must be factored into acoustic design
decisions.

One-third octave far-field PWL spectra at 80% and 907 rpm are shown on
Figuire 392 and 393. As with the SPL data, the turbine noise reduction
occurred over a broad frequency range. On a one-third-octave basis, a broad-
band noise floor holds the fully suppressed data at a higher level (approxi-
mately 5 dB higher at blade passing versus the narrowband PWL). This broad-
band noise is attributed to jet noise and/or casing radiation. The reductions
in the turbine OAPWL's are shown on Figure 394; again, the apparent broadband

noise floor causes the decay in the treatment effectiveness at the high speed
points.

As previously noted, the J85 spacing that was tested was based on rec ilts
from Phase I of this program. The average reduction in turbine tone PWL's
from the J85 spacing test is r~ompared with the Phase I results on Figure 395.
The PWL reductions derived from the duct probe data are shown versus engine
speed on Figure 396 for the J85. The variation in the APWL's is consistent
with the variations in the Phase I component test data (Reference 3). A
comparison between the two turbines tested in Phase I and Phase II is made on
Table 14, The primary differences between these turbines are the PWL's and
the stage pressure ratio's. The difference in PWL for these two turbines at
different pressure ratios, along with the change in turbine tone level which
was observed in the J85 baseline data when the exhaust nozzle was opened
(changing the turbine pressure ratio), leads to the conclusion that pressure
ratio should be a prime factor in turbine noise correlation work and/or
scaling studies.

The design goal for the turbine acoustic treatment was 20 dB. The test
results, excluding casing radiation, show that the average suppression was
23.5 dB (probe data). This confirms the conclusion made in the Phase I

program, that, for high temperature applications, SDOF acoustic treatment has
predictable acoustic behavior.
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Table 14. Comparison of HPT Acoustic Test
Probe Data,

Single-Stage HPT J85 2nd Stage

(Phase 1) (Phase II)
PWL (dB) 149.5 135.9
No. Turbine Blades 80 55
Spacing/Tip Chord 0.306 0.341
6
Utip' ft/sec 966 1181
Mach No, (Tip) 0,847 0.714
Stage Loading 0,.7114 0.879
Stage Pressure Ratio (RT/PS) 5,11 2,702
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{
i
3
s
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For a given treatment configuration (in this case SDOF as specified on
Figure 363 with treatment on the hub, splitter, and outer casing), the sup-
pression is (to a first-order approximation) directly proportional to the
treatment length. Thus, the suppression achievable for varying lengths of
treatment can be drawn for the J85, Figure 397. Also shown on Figure 397 is
the casing radiation floor experienced in this test, and the projected sup-
pression which would be observed in the far field in a test for the effect
of treatment length.

The effect of eliminating the splitter from the treatment section would
be to lower the ideal suppression by roughly a factor of 4. This is
illustrated on Figure 398.

While the effects of spacing and the effects of treatment are functions
of the specific design under consideration, the turbine noise suppressicn
curves of Figures 395 (spacing) and 397 or 398 (treatment) can be used to
estimate what acoustic modifications are required to meet systems noise
goals fcr preliminary design studies.

4.3.2.3 Full-Scale Results

In order to provide a basis for the assessment of full-scale (SST size)
turbine noise, the J85 far-field data were scaled on a weight-flow basis to
the SST size. This scaling resulted in a downward frequency shift of
approximately 7 1/3-octave bands. Generally the J85 data below 8 KHz were
omitted; however, each case was examined individually, and the lower frequency
limit was adjusted. PNL directivities (300~-foot sideline) at 80%, 90%, and
1007 are shown on Figures 399 through 403. The PNL reductions at 110° are
shown versus engine speed on Figure 402. Again, the jet noise floor, and the
casing radiation, hold the fully suppressed turbine data at a higher PNL
value to the extent that no reduction is seen at takeoff. Comparing the J85
PWL reductions at blade passing, Figure 391, with the full-scale PNL reduction,
Figure 401, for the spacing configuration shows the delta's to be nearly the
same, i.e., APWLjgs = APNLggr. Thus, without the effects of the jet noise
floor and casing radiation, a PNL reduction on the order of 25 to 30 PNdB

could be achieved for the turbine by including spacing and treatment in the
design.

4.3.2,4 J85 Performance

A comparison between engine performance of the J85 for the baseline
engine (nominal and maximum Ag) and the engine with the increased turbine
second-stage spacing is presented on Table 15, Opening the exhaust nozzle
for the baseline J85 moved the operating point(s) considerably, relative
to the nominal nozzle performance. Operating so far "off-design" essentially
eliminates the possibility of extrapolating the performance results directly
to other engines. However, from an acoustic standpoint, opening the nozzle
was necessary. When the turbine spacing was increased, the flow apparently
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Table 15, Performance Comparison,

Takeoff 16,500 rpm
Airflow, P3 EGT, | P5.1 vJet’
Test Vehicle 1b/sec P2 °F P2 ft/sec
Base/Cycle A8 40,3 6.18 1027 | 1.74 1582
Base/Max, A8 40,9 5.89 821 | 1.42 1167
Turbine Spacing 42,72 5.70 749 | 1,50 1239
Approach 13,200 rpm
Airflow, P3 EGT, | P5.1 vjet,
Test Vehicle 1lb/sec P2 2-F P2 ft/sec
Base/Cycle A8 27.0 3.16 790 | 1,17 736
Base/Max, A8 27.2 3.04 680 | 1,07 410
Turbine Spacing 29.9 3.17 596 1.12 393
=
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had a chance to "straighten itself out," e.g., the pitchline analvsis
indicates that the relative air angle into the second-stage turbine blades
was v18° for baseline nominal Ag, “24° for baseline max. Ag, and "21° for

spacing max. Ag. Summary curves showing pertinent operating parameters are
shown on Figure 403.

While it is recommended that these results should not be applied

| quantitatively to other turbines, they do point out that spacing does not
necessarily impose a severe performance penalty.

4.3.3 Summary and Conclusions

1, Both spacing and treatment are quite effective methods for
suppressing turbine noise in the far field. 1

2. Both spacing and treatment suppressed turbine noise over a
broad frequency range.

pY The spacing results are consistent with Phase I of this
) program.

4, Far-field directivities are similar for the suppressed and
unsuppressed turbines.

5% Measured directivities are consistent with previously
published results.

6. Both jet noise and casing radiation must be considered
in setting the noise floor prior to selecting the amount
of turbine treatment required.

i Future turbine noise correlations and scaling studies
should consider turbine pressure ratio as a key parameter.

8. Spacing does not necessarily impose a severe performance
penalty on the system.
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4.4 COMPRESSOR NOISE REDUCTION

4.4.1 Test Description

4.4,1.1 Vehicle Description

The vehicle tested is representative of a low pressure fan for a
Supersonic Transport (SST). The design characteristics are listed in
Table 16, The low pressure compressor (LPC) test vehicle is a three-stage
and has an inlet guide vare system with fixed forward struts and long-
chord variable trailing-edge flaps. The rotors are unshrouded with the
exception of Rotor 1, which employs a mid-span shroud. All stators are
shrouded and have variable stagger. A schematic of the vehicle 1s shown

in Figure 404. Figure 405 and 406 show photographs of the 3-stage
compressor.

The measured fan performance map is shown in Figure 407. The two fan
operating lines are indicated along with typical constant fan thrust lines.
Figure 408 shows the IGV schedule as a function of corrected tip speed.

4.4.1.2 Test Configurations

Two types of inlet systems were tested with the three-stage compressor.
A cylindrical inlet with a bellmouth forebody was used for the clean inlet
fan aerodynamic evaluation and as the baseline configuration for the
acoustic data. A hybrid inlet, which was a scale model of a mixed-compres-

sion supersonic inlet designed for cruise flight at Mach 2.5, was also
tested.

4,4,1.2,1 Baseline Inlet

The baseline bellmouth cylindrical inlet is shown in Figure 409. It
consists of a bellmouth forebody to simulate inflow conditions during
flight and a long cylindrical section. The inlet-length-to-fan-diameter
ratio (L/D) of the inlet from the fan IGV's is 3.26 fan diameters. This
inlet was used to evaluate the unsuppressed noise of the fan.

4.4.1.2.2 Hybrid Inlet - Aerodynamic Design

In the hybrid inlet suppression concept, the noise suppression from
moderate airflow acceleration and wall acoustic treatment are combined. 1In
this way, the performance and stability concerns associated with hard-choking
the inlet are avoided. This hybrid inlet concept 1s especially attractive for
the SST because the variable geometry and airflow control required by the
hybrid inlet concept is inherent in the supersonic inlet and, thus, not a
penalty to the system. The hybrid inlet was designed for a 0.75 average
throat Mach number at both takeoff and approach. In addition, the design !
featured a blow-in-door auxiliary inlet system to augment take-off airflow.
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Table 16. Low Pressure Compressor Characteristics,

Design Characteristics (100% Sea Level Static)

Design Speed 13,266 rpm

Tip Speed 1524 ft/sec
Total Airflow 217 1b/sec

Pressure Ratio 4.1

Bypass Ratio 0,2

Compressor Rotors

32 Stage 1 Mid-span Shrouded Blades
42 Stage 2 Blades

52 Stage 3 Blades

26,3 in, Tip Diameter

Stators

18 Inlet Guide Vanes
68 Stage 1 Blades
92 Stage 2 Blades
92 Stage 3 Blades

Other Characteristics

Vane/Blade Ratio (Stage 1) 2.125
IGV/Rotor 1 Spacing 0.29 (Tip) 0.05 (Hub)
Rotor 1/Stator 1 Spacing 0.29 (Tip) 0,09 (Hub)
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Figure 405. Cutaway View of Three-Stage Compressor.
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Figure 406. Compressor Installation.
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The design of the hybrid inlet was based on the following ground rules:

© Design for cruise Mach number of 2,50 using a mixed compression,
translating centerbody type of inlet,

A ] Incorporate auxiliary inlets featuring internal and external cowl
doors/flaps positionable to more than one discrete setting.

| ° Include six support struts in the inlet having a chord of 10-12".

o Allow the inlet length to reflect only the foregoing requirements
plus the desire for unseparated operation in both approach and
take~-off configurations. Provide a separate cylindrical section
between the inlet, as such, and the LPC for additional acoustic
treatment. The acoustic treatment design is discussed in
Section 4.4.1.2.3.

While the Boeing SST N5 inlet design provided an obvious reference design,
\ several factors acted to preclude directly scaling it for the present applica-
tion, among them:

] Difference in design cruise Mach number, 2.50 versus 2.70

o Difference in design point specific flow and hub-to~tip ratio
between the advanced LP compressor and the GE4 compressor

° Decision to size the take~off inlet position at 957 corrected speed
to provide design point margin and allow above-the~design throat Mach
number testing.

] Necessity to recontour the Boeing inlet to prevent observed flow
separation that was reattached prior to reaching the compressor due
to flow area reduction through the frame struts. This situation was
compounded for the present design, because its required support
struts had relatively greater blockage than the Boeing design.
Therefore, the struts had to be located further aft in the inlet,
to preclude local flow choking.

Consequently, although the Boeing N5 inlet design was a good starting point,
several modifications were necessary to conform to the particular requirements
of the present application. The following discussion will illustrate the
design approach employed.

The inlet was sized for operation at a supersonic cruise design point
of Mach 2.5, 60K feet of altitude, with the following assumptions (based
mainly upon data from References 45 and 46):

| , ® Operation at 1007 physical speed, which corresponded to 77.0%
g corrected speed and 71.4 lb/sec corrected compressor inlet flow,
» for the cruise condition; compressor map from Build No. 1; and,

estimated operating line.
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. Shock-on—lip operation (mass flow ratio of one)

° Boeing SST wing flow field characteristics

° Total inlet capture flow equal to 112.5% of engine demand

. Subsonic diffuser boundary layer bleed equal to 37 of engine demand

' Total pressure recoveries of 0.91 overall and 0.96 in the subsonic
diffuser

. Terminal shock Mach number of 1.26
. Throat flow coefficient of 0.978

These specifications defined the inlet capture area (and cowl lip radius) and
the cruise throat area. The cowl throat radius was scaled from the Boeing N5
model value by cowl lip radius; this defined the centerbody throat radius.

The supersunie diffuser length was established by scaling, with respect
to cowl 1lip radius, that portion of the N5 model that accomplished the
amount of diffusion applicable to the reduced (2.50) cruige Mach number. Then
the N5 internal cowl contour was ''stretched," scaling the axial coordinate by
supersonic diffuser length and the difference in cowl lip and local radius by
the radial increment between cowl lip and throat radii. This step, or the
equivalent, was found necessary to yield reasonable internal cowl surface
slopes and curvatures. The final contour was defined by passing a cubic

The forward portion of the centerbody, from tip to maximum radius (which

is actually forward of the annular throat station), incorporated the following
consideratinng:

® Cone tip angle and axial position relative to cowl lip were con-
strained by desired cruise shock structure.

' Specific cruise flow areas were desired at the throat and cowl 1lip
Stations.

' Centerbody contour had to be suitable for achieving the required

take~off and approach throat areas with reasonable translations,
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Sizing input employed for these conditions is listed in Table 17,
together with the cruise values previously given.

° A smooth flowpath was desired.

The forward centerbody portion was eventually formed, together with the aft
contour, from a conical tip and a cubic segment. Finalization of the aft
contour required considerable iteration, in which the axial location of the
six support struts was varied. Eventually, a combination of centerbody
contour and strut location was evolved which was acceptable in terms of
overall inlet length and predicted flow instability, as determined by flow
and boundary layer analysis. The struts were NACA 64 series airfoils and
had a 12-inch chord with 10% maximum thickness. They were positioned with
the trailing edge near the end of the internal cowl diffusion and the leading
edge near the end of the (approach) centerbody diffusion.

Final flowpath coordinates are listed in Table 18. Axial reference was
established as the flight cowl lip station, since the flowpath segment between
the struts and the compressor was initially undefined. The aeroacoustic lip
bellmouth employed for static testing to simulate low-speed flight conditions
is included in this tabulation. A flowpath sketch of the entire test config-
uration is shown in Figure 410. The primary inlet length was 2.29 fan (IGV)
diameters from the location of the flight 1ip leading edge to the diffuser
exit. Length of the entire hybrid inlet, from aeroacoustic lip leading edge
to the IGV frame was 3.20 fan diameters.

Evaluation of candidate design contours was accomplished by the use of
Streamtube Curvature (STC) flow analysis (Reference 47) plus AERO (Reference 48)
and Stratford and Beavers (SABBL) boundary layer analysis. Iterations were
conducted to define boundary-layer~adjusted coordinates upon which to base
a final viscous STC analysis. This tool also was used to "tune" the centerbody
positions, since the actual throat for this type of design does not form a
radial plane. The analytical model also included the axial and radial area
blockage distributions of six support struts lumped together on an equivalent
axisymmetric basis. The study configuration was terminated approximately
13-1/2 inches downstream of the strut trailing edge station to avoid pre-~
determining the flow characteristics in that locale.

Analytical wall Mach number distributions for the highest throat Mach
number studied are shown in Figures 411 and 412 for the approach and take-off
configurations, respectively. The near one-dimensionality of the flow for
this high throat radius-ratio, annular inlet is evident, even for these near-
choking conditions. Also indicated on Figures 411 and 412 are the locations

of the acoustic treatment. Note that the wall Mach numbers on the treatment
are <0.7, which was the design intent.

SABBL boundary layer stability assessment corresponding to the conditions
of Figures 411 and 412 is presented in Figures 413 and 414, respectively.
Stable operation is predicted in both cases, except in the deceleration zone
near the strut trailing edge which is moderately steep and occurs where the
boundary layer is relatively thick due to prior diffusion. Little signifi-
cance was assigned tn this predicted separation because:
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Table 18. Primary Inlet Flowpath Definition.
Centerbodyt lnternal Cowl
z# R z4
-29,497 0 - 7.281 18.639
-19,78a* 1.91520¢4 COMicAl o oap 18.069
-17,288 2,449 7.111 17.507
-11.288* 3.950 6.90 16.957 ﬁzigziggs;;fni:p}or
- 7.288 4,997 6.608 16.427 § a111p8% with
~ 3.288% 5.950 6.026 15.683
a/b = 1,382, Closed
- 0.288 6.543 5.186 15.016 @it With G0° of 3.812"
2,300% 6.976 4.406 14,445 1% 27 Alnkeser
4,712 7.317 3.411 13.985 ARt CHITRSEE.
7.040% 7.543 2.325 13.647
8.712 7.623 1.565 13,494
10.594* 7.669 0.787 13.402
12.712 7.709 0.000 13,371
14.150¢ 7,714 3.247+  13.371 } ST dek
15.000 7.700 4,000 13,369
16.00 7.666 5.000 13.356
17.000 7.612 6.000 13,328
18.000 7.538 6.772% 13,292
18,000 7.442 7.000 13.279
20.000 7.324 8.000 13,207
21,000 7.183 9.000 13,111
22,142+ 6.994 9,142% 13.095
23,000 6.832 10.000 12.991
24,000 6.624 11.512# 12,768
25,000 6.402 13.000 12.505
26,000 5.170 15.000 12,119
27.000 5.932 17.438% 11.679
28.000 5.695 19,000 11,454
29,000 5.463 20.992# 11.232
30.000 5.241 21,992 11.145
31,000 5.034 22,992 11,076
31.650% 4.910 23,992 11,020
32,000 4,847 24,992 10.977
33.000 4.683 25,992 10,947
34,000 4,539 23.992 10.928
35,000 4,414 27.992 10.919
36,000 4,307 28,318+ 10,918
37.000 4,216 28,992 10,919
38,000 4.138 29,992 10,928
39,000 4,072 30,792% 10.942
10,000 4.016 30,992 10.946
41,000 3,969 32,992 11,009
41,450% 3,950 34,890% 11.101
42,000 3,928 36.992 11,235
43,000 3,894 38,988% 11.383
44,000 3.865 40.992 11,544
45,000 3,841 42,992 11,721
16,000 3.823 44,453% 11.866
47,000 3,810 46,992 12,152
48.000 3.803 418,992 12,394
19,000 3,800 50,992 12,636
Cylinder 52,623* 12,823
+ 55,992 13,148
Hub Firing 60,992 13,381
61,400% 13.383
Cylinder to
1GV L.E,
L S — e
t Centerbody approach position is tabulated. Translate 6.5" forward for
takeoff,

* Control points for splined curve fit, All other radii rounded to nearest
0.001",

$Z = 0.0 corresponds to flight cowl leading edge and vehicle station -85.54.
Vehicle station 0.0 represents rotor 1 leading edge.

- = = -All dimensions in inches~ - - -
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Figure 412, Viscous STC Inlet Wall Mach Number Distributions for the
Take-off Mode,
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. The exact, three-dimensional flow pattern due to the annular inlet
and contoured struts plus viscous effects cannot be simulated by
STC; consequently, the predicted separation may either not occur

at all or, alternatively, it may be confined to the immediate
vicinity of the struts,

° Flow separation in the relatively low Mach number region of the
strut trailing edge would not adversely affect the bulk of the
primary inlet upstream of the struts, would likely be reattached

prior to entering the compressor by the hub flowpath convergence,
and would be a relatively low-loss producer.

The main objective of the blow-in-door auxiliary inlet design was to
provide a controlled diffusion process that allowed discretely variable flow
rates and BID throat Mach numbers, in order to facilitate investigation of the
acoustic effect of auxiliary inlet design independently of primary inlet opera-
tional characteristics. The desire was for three internal door settings that
would approximate the flow splits indicated below:

fgza “ehpry Mthgyp “s1p/“roTAL
Small 1.0 0.6 *
Nominal 0.75 0. 75 ‘ 0.15
Large 0.6 1.0 *
The quantity (wgrp/wTOTAL) had to be determined for the small and large
BID setting to obtain the required flow splits.

Preliminary sizing calculations were made, with these objectives in mind.
The results of these sizing calculations indicated that this concept was
feasible from a combined aeromechanical standpoint. This investigation
presupposed the BID system to be placed in its "natural" location between
the six support struts. Such a design was desirable since it facilitated a
minimum length inlet, for the constraints already cited, as it did not
intrude on either the forward or aft acoustic treatment zones.

Pertinent features of the BID system that evolved include:

. Six identical discrete modular passages, one between each pair of
support struts, were each exposed by rotation of a pair of doors/
panels situated on the internal (inward rotation) and external
(outward rotation) cowl surfaces. The actual test configuration
had a fixed outer door and a manually positionable inner door.

° The passages were essentially two-dimensional, with side-plates to
preclude lateral flow spillage. Only the fixed outer flowpath
of the BID passage was axisymmetric, since it led directly to
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the internal cowl flowpath. Each passage was roughly 20° in

circumferential extent, allowing sufficient strut clearance for
the primary tip flow.

° The external surface of the inner door was made conical, after
initial evaluation of a contoured design exhibited too peaky a
wall Mach number distribution that required excessive diffusion.

STC/SABBL analysis was again used to guide the detail design., 1In this
case, however, the procedure was not straightforward, for two reasons:

] The primary inlet passage was axisymmetric, except for the support
struts, while the BID inlet system was asymmetric, being composed of
circumferentially discrete, two-dimensional openings., While the
STC program could solve either axisymmetric or planar flow problems,

it was not designed for a mixed geometry like the complete super-
sonic inlet,

] Both passage flow rates could not be specified independently, since
only unique pairs of primary and BID flow rates would satisfy the

Kutta condition, i.e., matched static pressures at the inner door
trailing edge.

To circumvent the above, a scheme was devised whereby the BID passage was
modeled as a continuous 360° slot, coannular with the primary inlet. A section
of the inlet extending axially from upstream of the struts and BID entrance to
beyond the strut trailing edge was included, with the primary duct wall
coordinates adjusted for estimated boundary layer growth. The door trailing
edge was approximated by a section gradually tapering to zero thickness, with

about a 21-22° included angle, as opposed to thz actual 0,08 inch trailing edge
radius, to facilitate the STC analysis.

An existing STC feature was then utilized whereby the BID passage flow
rate was input and fixed at the desired value while the primary passage flow
rate was iterated from the initial input value until the Kutta condition
was satisfied at the internal door trailing edge. The resulting primary
and predetermined BID flow rates were then adjusted to estimated actual test
configuration values by the ratio of actual-to-STC (axisymmetric) passage
discharge area, with the actual discharge area calculated to reflect the
effects of local strut blockage, boundary layer, and BID blockage as applicable.

Internal door settings were varied until three positions were identified
that produced the approximate primary/BID flow relationship desired. Pertinent
BID sizing and design parameters resulting from the analysis are summarized in
Table 19, Note that the various door settings possess different diffuser area
ratios as well as different absolute flow areas. The BID system flowpath is
shown in isolation in Figure 415 and in relation to the overall inlet in Figure
410. Figure 416 shows some approximate dimensions of the internal door in its
three open settings. The flowpath coordinates for the remaining (fixed) por-
tions of the BID system are listed in Table 20, Figure 417 is a trimetric re-
presentation of the BID module. A sufficient amount of the inlet external
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Table 19, Summary of Blow-In Door Design Characteristics,

Configuration ~ Relative
Throat Area Setting

100%
81% (Nominal) 114%
* Primary Flow Rate, w/e/e)pri ~ lb/sec 101,12 92,78 83,62
* Total BID Flow Rate, w/e/a)Bm ~ lb/sec 10,65 14,82 17.79
* Total Inlet Flow Rate, We/é)total ~ lb/sec 111,77 107.60 101.41
BID-to~Total Flow Ratio, wBID/wtotal 0,0953 0,1377 0.1754
Total BID Throat Area, AthBID ~ in,2 37.59 46,22 52,63
Primary Total-Pressure Recovery, anri 0.973 0,973 0,973
BID Total-Pressure Recovery, nRBID 0.980 0.980 0.980
Primary Throat Discharge Coefficient, Cdpri th 0,987 0,987 0,087
BID Throat Discharge Coefficient, CdBID th 0,965 0,965 0,965
* Primary Throat Mach Number, M) >1 0,728 0.596
pri (Super-
critical)
* BID Throat Mach Number, Mt 0.597 0,766 ~ 1,0
P1p
BID Diffuser Area Ratio, (A /A ) 1,015 1,099 1,180
ex’ th
BID
BID Equivalent Diffusion Angle, eeq ~ deg. 2,23 2,95 4,12
BID Trailing Edge Location:
(Radial Distance from qb, Rte ~ in, 12,05 11,62 11.25
(Axial Station), zte’” in, 57.25 25,125 56.97
BID Entrance Area Ratio (Entrance Area
on First Orthogonal Entirely Within BID
Duct), Aen/Ath 2,022 1,645 1.444
Door Anglef (Outer Surface), eBID ~ deg, ~15,14 -21.18 ~26,14
BID Passage Width (Constant), Werp ~ in. 4,461 4,461 4,461
Number of BID Passages, M 6 6 6

BID

* Actual configuration values estimated from STC analysis of
continuous BID slot.

t Relative to inlet centerline.
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Table 20,

Cylindrical ;

Circular
Arc

Conical

Inner Surface
of BID Passage

Outer Surface
of BID Passage

z

40,000
44,159
[ 44,555

44,951

45,348
< 45,744
46,140
46,536
46,933
\ 47.329

47,725
; 52.970

4

16,210
16,210
16,201
16,173
16,127
16,062
15,977
15.873
15,747
15.600
15,430
13 320

Refer to Figure

416 for door sur-

face detail,
which forms the

remainder of this

surface,

Y/

51,270
51.332
51.517
51.887
52,380
52,750
54,000
55.150
56,500
57,960
59,000

e
20,440
19.572
18,717
17,757
16,917
16,440 \
15.188
14,370
13,755
13,410

T

13,312 /

Interfaces with
internal cowl

surface of pri-
mary inlet here,

WBID ‘\

Blow-In-Door Passage Fixed Flowpath Definition,

Circular Arc Aero-
Acoustic Lip
Extension Plus
External Door

Fixed Surface of
BID Passage
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cowl surface was simulated to reduce the local wall velocity to relatively
low levels - less than 25 ft/sec. The simulated external door had a well-
rounded lip extension to be more representative of flight speed operation.
However, a structural design of the BID entrance side edges precluded a

significant amount of rounding and limited it to radiusing the stock
thickness.,

The analytical flow characteristics of the BID passage are shown in
Figures 418, 419, and 420 for reference, notwithstanding the previously
described difference between the STC model and the actual test configuration.
Downstream of the entrance section, the flow is seen to be nearly
one-dimensional., The Primary side surface of the internal door is also shown
to point up the manner in which flow along it accelerates, while the BID side
decelerates, to match static pressure at the juncture of the door trailing
edge. SABBL separation parameters calculated for these predicted BID
passage flow characteristics are included 1in Figures 421, 422, and 423. The
three designs are free of predicted flow separation, except for a small
region within 0.2-0.3 inch from the door trailing edge for the nominal (100%)
and large (114%) BID settings. This is a consequence of the relatively high '
local diffusion rate imposed on the door surface by the Kutta condition. TIts
resolution is not directly amendable to simple flowpath modifications of the
basic design adopted. The design (as shown) was selected for fabrication in
spite of this undesirable feature because the predicted separation zone was

quite small and was not expected to significantly affect the design diffuser
area ratio.

4.4.1.2,3 Hybrid Inlet - Acoustic Design

The acoustic treatment for the hybrid inlet was designed for noise
suppression across a wide range of frequencies. In particular, the treatment
was designed for suppression at the blade passing frequency of all three rotors,
the first rotor second harmonic, and lower frequency multiple pure tones as
shown in Figure 424. The acoustic treatment consists of four Single Degree
Of Freedom (SDOF) liner segments. The liner resonrator parameters and the
respective tuning frequencies are given in Table 21, The liner segment
lengths and axial location are shown in Figure 425, The specific reactances
of the four liners are shown as a function of frequency in Flgure 426,
Treatment is applied between the BID's and the fan face to provide noise
suppression prior to the BID's. The thick treatment was applied in this area
to suppress the higher order modes up to 10,000 Hz. The treatment paneis
were replaceable with hardwall Panels so that acoustic treatment suppression
could be isolated. A treatment length of L/D = 1.0 was selected because 1t
fit well and because it was felt that this was the maximum treatment length
which could Practically be included in an actual SST.

A schematic of the hybrid inlet configuration is shown in Figure 425. ' A
sket.ch of a flight 11p (not tested) is also shown for comparison with the
aeroacoustic lip. Also, in iigures 427 and 428, photographs of the hybrid
inlet with and without the BID's are shown. ;
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